## 853. Molecular Polarisability. Electric Dipole Moments and Molar Kerr Constants of Two Sulphoxides and Three Sulphones as Solutes.

By M. J. Aroney, L. R. Fisher, and R. J. W. Le Fèvre.<br>Dipole moments and molar Kerr constants are reported for $\mathrm{Me}_{2} \mathrm{SO}$, $\mathrm{Me}_{2} \mathrm{SO}_{2},\left[\mathrm{CH}_{2}\right]_{4} \mathrm{SO}_{2}, \mathrm{Ph}_{2} \mathrm{SO}$, and $\mathrm{Ph}_{2} \mathrm{SO}_{2}$, as solutes. Polarisability specifications of dimethyl sulphone have been estimated and used to deduce that (a) the five-membered ring of tetrahydrothiophen dioxide is probably planar, (b) the benzene rings in diphenyl sulphone are approximately perpendicular to the C-S-C plane, and (c) the observed molar Kerr constant of diphenyl sulphoxide can be reconciled with that calculated for a configuration analogous to that found for diphenyl sulphone.

That average polarisabilities of structures related as $\mathrm{R}_{2} \mathrm{~S}, \mathrm{R}_{2} \mathrm{SO}$, and $\mathrm{R}_{2} \mathrm{SO}_{2}$ are usually very similar is shown by the corresponding molecular refractions; e.g., for $\mathrm{Me}_{2} \mathrm{~S}, \mathrm{Me}_{2} \mathrm{SO}$, $\mathrm{Me}_{2} \mathrm{SO}_{2}, \mathrm{Ph}_{2} \mathrm{~S}, \mathrm{Ph}_{2} \mathrm{SO}$, and $\mathrm{Ph}_{2} \mathrm{SO}_{2}$ the $R_{\mathrm{D}}$ 's are $19 \cdot 0,20 \cdot 1,20 \cdot 1,60 \cdot 0,61 \cdot 4$, and $62 \cdot 2$ c.c., respectively. Evidently the semi-axes of the molecular polarisability ellipsoids for a given sulphide-sulphoxide-sulphone series are either the same or vary in ways such that their means remain constant. As the dipole moments of the six molecules just cited differ markedly (being, in order, $1.56,4.03,4.26,1.50,4.08$, and 4.71 D ), information on the anisotropic polarisabilities of the species should be provided by measurements of their molar Kerr constants. No ${ }_{\mathrm{m}} K^{\prime}$ 's of sulphoxides or sulphones have been hitherto recorded.

## Experimental

Materials, Apparatus, etc.-The solutes were prepared and/or purified to give: dimethyl sulphone, m. p. $108^{\circ}$; dimethyl sulphoxide, b. p. $94-96^{\circ} / 20 \mathrm{~mm}$.; diphenyl sulphone, m. p. $125-126^{\circ}$; diphenyl sulphoxide, m. p. $71^{\circ}$; tetrahydrothiophen dioxide, m. p. ca. $23^{\circ}$.

Apparatus, techniques, symbols, and methods of calculation have been described before. ${ }^{1-3}$
${ }^{1}$ Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953.
${ }^{2}$ Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, J., 1956, 1405.
${ }^{3}$ Le Fèvre and Le Fèvre, (a) Rev. Pure Appl. Chem. (Australia), 1955, 5, 261; (b) Chapter XXXVI in " Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ., Inc., New York, London, 3rd edn., Vol. I, p. 2459.

Table 1.
Incremental Kerr constants, dielectric constants, densities, and refractive indexes for solutions at $25^{\circ}$.
Dimethyl sulphone in benzene

| $10^{5} w_{2} \ldots \ldots$ $10^{7} \Delta B$ | 172 -0.014 | 478 -0.044 | $\begin{gathered} 492 \\ -0.042 \\ \text { when } \end{gathered}$ | $\begin{gathered} 507 \\ -0 \cdot 045 \\ \text { nce } \sum 10^{7} \Delta E \end{gathered}$ | $\begin{gathered} 530 \\ -0.044 \\ / \sum w_{2}= \end{gathered}$ | $\begin{aligned} & 637 \\ & -0 \cdot 055 \\ & -8.73 . \end{aligned}$ | $\begin{gathered} 668 \\ -0.060 \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{5} w_{2} \ldots \ldots$ | 277 | 346 | 422 | 431 | 627 | 690 |  |  |  |
| $\varepsilon^{25} \ldots \ldots \ldots$ | $2 \cdot 3313$ | $2 \cdot 3452$ | $2 \cdot 3601$ | $2 \cdot 3629$ | $2 \cdot 3994$ | $2 \cdot 4213$ |  |  |  |
| whence $\Sigma \Delta \varepsilon / \sum w_{2}=21 \cdot 0$. |  |  |  |  |  |  |  |  |  |
| $10^{5} w_{2} \ldots \ldots$ | 372 | 454 | 516 | 530 | 540 | 682 | 736 | 759 | 774 |
| $10^{4} \Delta n \ldots .$. |  |  |  |  |  |  | -2 | -2 | -2 |
| $d_{4}^{25} \ldots \ldots$. | $0 \cdot 87487$ | $0 \cdot 87512$ | $0 \cdot 87526$ | $0 \cdot 87530$ | $0 \cdot 87536$ | $0 \cdot 87576$ | $0 \cdot 87588$ | $8 \quad 0.87597$ | 0.87597 |
| whence $\Sigma \Delta n / \Sigma w_{2}=-0.026 ; ~ \Sigma \Delta d / \Sigma w_{2}=0.288$. |  |  |  |  |  |  |  |  |  |
| Dimethyl sulphoxide in carbon tetrachloride |  |  |  |  |  |  |  |  |  |
| $10^{5} \chi_{2} \ldots \ldots$. | 192 |  |  | 604 | 896 | 909 |  | 1138 |  |
| $10^{7} \Delta B \quad \ldots$ | 0.031 |  |  | $0 \cdot 113$ | $0 \cdot 164$ | $0 \cdot 170$ |  | $0 \cdot 204$ |  |
| whence $\sum 10^{7} \Delta B / \sum w_{2}=18 \cdot 4$. |  |  |  |  |  |  |  |  |  |
| $10^{5} w_{2} \ldots \ldots$. | 330 |  |  | 514 | 626 | 856 |  | 1285 | 1289 |
| $\varepsilon^{25} \ldots \ldots .$. | $2 \cdot 3579$ |  |  | $2 \cdot 4309$ | $2 \cdot 4724$ | 2.5704 |  | $2 \cdot 7506$ | 2.7502 |
| $d_{4}^{25} \ldots \ldots \ldots$ | -- |  | 114 | - | - | 1.57881 |  | - | 1.57584 |
| $10^{5} w_{2} \ldots \ldots$ | 1452 |  |  | 1512 | 1631 | 2007 |  | 2470 |  |
| $\varepsilon^{25} \ldots \ldots \ldots$. | $2 \cdot 8219$ |  |  | - | - | - |  | - |  |
| $d_{4}^{25} \ldots \ldots \ldots$ | - |  | 520 | 1.57431 | 1.57401 | 1.57224 |  | $1 \cdot 56906$ |  |
| where $\Sigma \Delta \varepsilon / \sum w_{2}=40 \cdot 3 ; \sum \Delta d / \sum w_{2}=-0.652$. |  |  |  |  |  |  |  |  |  |
| $10^{5} w_{2} \ldots \ldots$ | 2686 | 2847 |  | 3333 |  |  |  |  |  |
| $10^{4} \Delta n \ldots \ldots$ | 15 | 15 |  | 20 |  |  |  |  |  |

## Diphenyl sulphone in benzene

| $\begin{aligned} & 10^{5} w_{2} \\ & 10^{7} \Delta B \end{aligned}$ | $\begin{gathered} 103 \\ -0.024 \end{gathered}$ | $\begin{gathered} 228 \\ -0.058 \end{gathered}$ | $\begin{gathered} 287 \\ -0.069 \end{gathered}$ | $\begin{gathered} 411 \\ -0 \cdot 100 \\ \text { whenc } \end{gathered}$ | $\begin{gathered} 418 \\ -0 \cdot 097 \\ \sum 10^{7} \Delta l \end{gathered}$ | $\begin{gathered} 489 \\ -0 \cdot 130 \end{gathered}$ $/ \Sigma w_{2}=$ | $\begin{gathered} 660 \\ -0.172 \\ -25.5 \end{gathered}$ | $\begin{gathered} 860 \\ -0.232 \end{gathered}$ | $\begin{gathered} 1060 \\ -0.259 \end{gathered}$ | $\begin{gathered} 1268 \\ -0.335 \end{gathered}$ | $\begin{gathered} 2257 \\ -0.577 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{5} w_{2}$ | 213 | 474 | 877 | 888 | 894 | 940 | 966 | 1270 | 1514 | 1906 | 2305 |
| $\varepsilon^{25}$ | - | 2.3338 | - | $2 \cdot 3894$ | $2 \cdot 3864$ | $2 \cdot 3904$ | $2 \cdot 3925$ | $2 \cdot 4370$ | $2 \cdot 4631$ |  |  |
| $d_{4}^{25} \ldots$ | $0 \cdot 87440$ | $0 \cdot 87508$ | $0 \cdot 87638$ | 0.87635 | $0 \cdot 87623$ | - | - | $0 \cdot 87743$ | - | 0.87919 | $0 \cdot 88036$ |
| $10^{4} \Delta n$ |  |  |  |  |  |  |  | - |  | 15 | 19 |

whence $\Sigma \Delta \varepsilon / \sum w_{2}=12.7 ; \Sigma \Delta d / \Sigma w_{2}=0.285 ; \Sigma \Delta n / \Sigma w_{2}=0.081$.
Diphenyl sulphoxide in carbon tetrachloride

| $\begin{aligned} & 10^{5} w_{2} \\ & 10^{7} \Delta B \end{aligned}$ | $\begin{gathered} 343 \\ -0.027 \end{gathered}$ |  | $\begin{aligned} & 414 \\ & -0.025 \\ & \quad \text { whence } \end{aligned}$ | $\begin{gathered} 462 \\ -0.033 \\ 10^{7} \Delta B / \sum u \end{gathered}$ | $\begin{gathered} 659 \\ -0 \cdot 049 \\ =-7 \cdot 15 . \end{gathered}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{5} e_{2}$ | 278 |  | 347 | 533 | 621 |  |  |  |
| $10^{4} \Delta n$ | 7 |  | 9 | 14 | 16 |  |  |  |
| whence $\Sigma \Delta n / \Sigma w_{2}=0.257$. |  |  |  |  |  |  |  |  |
| $10^{5} w_{2}$ | 186 |  | 236 | 328 | 365 |  |  | 551 |
| $\varepsilon^{25} \ldots$ | $2 \cdot 2582$ |  | $2 \cdot 2665$ | $2 \cdot 2815$ | $2 \cdot 2880$ |  |  | $2 \cdot 3195$ |
| whence $\sum \Delta \varepsilon / \sum w_{2}=16 \cdot 7$. |  |  |  |  |  |  |  |  |
| $10^{5} w_{2}$ | 475 |  | 492 | 825 | 1282 |  |  |  |
| $d_{4}^{25}$. | 1.58256 |  | 1.58235 | 1.58084 | 1.57896 |  | 873 |  |
| whence $\Sigma \Delta d / \Sigma w_{2}=-0.435$. |  |  |  |  |  |  |  |  |
| Tetrahydrothiophen dioxide in benzene |  |  |  |  |  |  |  |  |
| $10^{5} w_{2}$ | 618 | 827 | 848 | 1271 | 1526 | 1878 | 2496 | 2717 |
| $10^{7} \Delta B$ | 0.051 | 0.089 | - | $0 \cdot 112$ | $0 \cdot 140$ | $0 \cdot 176$ | $0 \cdot 217$ |  |
| $10^{4} \Delta n$ | - |  | - | - | - | 2 | 3 | 4 |
| $d_{4}^{25}$.. | - | - | $0 \cdot 87641$ | $0 \cdot 87778$ | 0.87858 | 0.87972 | $0 \cdot 88167$ | $0 \cdot 8823$ |


| $10^{5} w_{2}$ | $\cdots \cdots \cdots$ | 164 | 283 | 395 | 992 | 1803 | 2611 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\varepsilon^{25} \ldots \ldots \ldots \ldots$ | 2.3057 | 2.3304 | 2.3546 | 2.4737 | 2.6362 | 0.7973 |  |

whence $\Sigma \Delta \varepsilon / \sum w_{2}=20 \cdot 2$.

Table 2.
Dielectric polarisations, dipole moments, and molar Kerr constants (from observations on solutions at $25^{\circ}$ ).

| Solute | Solvent | $\alpha \varepsilon_{1}$ | $\beta$ | $\gamma$ | $\delta$ | ${ }_{\infty} P_{2}$ (c.c.) | $R_{\lambda}$ (c.c.) | $\mu(\mathrm{D}) *$ | $10^{12}{ }_{\infty}\left({ }_{m} K_{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Me}_{2} \mathrm{SO}_{2}$ | $\mathrm{C}_{6} \mathrm{H}_{6}$ | 21.0 | $0 \cdot 330$ | -0.018 | $-21.3$ | 393 | $20.08 \dagger$ | $4 \cdot 26$ | -217 |
| $\mathrm{Me}_{2} \mathrm{SO}^{2}$ | $\mathrm{CCl}_{4}$ | $40 \cdot 3$ | $-0.411$ | 0.038 | 263 | 354 | $20.06 \dagger$ | $4 \cdot 03$ | +144 |
| $\mathrm{Ph}_{2} \mathrm{SO}_{2}$ | $\mathrm{C}_{6} \mathrm{H}_{6}$ | $12 \cdot 7$ | $0 \cdot 326$ | 0.054 | $-62.2$ | 571 | $62 \cdot 2 \ddagger$ | $4 \cdot 97$ | -1115 |
| $\mathrm{Ph}_{2} \mathrm{SO}$ | $\mathrm{CCl}_{4}$ | 16.7 | $-0.275$ | $0 \cdot 176$ | -102 | 405 | 61.4 § | $4 \cdot 08$ | -165 |
| $\left[\mathrm{CH}_{2}\right]_{4} \mathrm{SO}_{2}$ | $\mathrm{C}_{6} \mathrm{H}_{6}$ | $20 \cdot 2$ | $0 \cdot 361$ | 0.009 | 22.2 | 482 | $26.5 \S$ | $4 \cdot 71$ | +121 |

* Calc. by assuming ${ }_{\mathrm{D}} P=1 \cdot 05 R_{\lambda}$. $\dagger$ For He light, $\lambda 5876 \AA$ (Price and Gillis, J. Amer. Chem. Soc., 1953, 75, 4750). $\ddagger$ For Na light, $\lambda 5893 \AA$ (Baliah and Shanmuganathan, Trans. Faraday Soc., 1959, 55, 232). § For Na light (present work).

Observations are recorded in Table 1 and results summarised in Table 2. The quantities $\Delta \varepsilon, \Delta d, \Delta n$, and $\Delta B$ are the differences between the dielectric constants, densities, refractive indexes, and Kerr constants, respectively, of the solvents and of solutions containing weight fractions $w_{2}$ of solute. The following data apply at $25^{\circ}$ to the two solvents involved:

|  | $\varepsilon_{1}$ | $d_{1}$ | $\left(n_{1}\right)_{\mathrm{D}}$ | $10^{7} B_{1}$ |
| :--- | :---: | :---: | :---: | :---: |
| Benzene $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | 2.2725 | 0.87378 | 1.4973 | 0.410 |
| Carbon tetrachloride $\ldots \ldots \ldots \ldots \ldots \ldots$ | 2.2270 | 1.58454 | 1.4575 | 0.070 |

Previous Measurements.-The following dipole moments (in D) have been recorded (solvent or state given in parentheses; $B=$ benzene; $G=$ gaseous state): dimethyl sulphone, ${ }^{4} 4.41(\mathrm{G}),{ }^{5}$ $4.25(\mathrm{~B})$; diphenyl sulphone, ${ }^{6} 5.05$ (B), ${ }^{7} 5 \cdot 14$ (B), ${ }^{8} 5.02(\mathrm{~B}),{ }^{9} 5 \cdot 12(\mathrm{~B}),{ }^{10} 4.93$ (B); diphenyl sulphoxide, ${ }^{11} 4.08(B),{ }^{6} 4 \cdot 17(B),{ }^{12} 4.00(B),{ }^{8} 4.05(B)$; tetrahydrothiophen dioxide, ${ }^{13} 4.69(B),{ }^{14}$ 4.81 (B).

## Discussion

Dimethyl Sulphone.-The molecular symmetry is such that the principal axes can be located as shown in Fig. 1 with $b_{1}$ and $b_{2}$ in the $\mathrm{C}-\mathrm{S}-\mathrm{C}$ plane and $b_{3}$ normal to this plane. It follows that $\mu_{1}=\mu_{\mathrm{obs}}, \mu_{2}=\mu_{3}=0$, so that the molar Kerr constant can be expressed in terms of the optical polarisabilities $b_{1}, b_{2}$, and $b_{3}$ by the relations:

$$
\begin{gather*}
{ }_{\mathrm{m}} K_{2}=2 \pi \boldsymbol{N}\left(\theta_{1}+\theta_{2}\right) / 9,  \tag{1}\\
\theta_{1}={ }_{\mathrm{D}} P\left[\left(b_{1}-b_{2}\right)^{2}+\left(b_{2}-b_{3}\right)^{2}+\left(b_{3}-b_{1}\right)^{2}\right] / 45 \boldsymbol{k} T_{\mathrm{E}} P, \\
\theta_{2}=\mu_{\mathrm{obs}}^{2}\left(2 b_{1}-b_{2}-b_{3}\right) / 45 \boldsymbol{k}^{2} T^{2},
\end{gather*}
$$

and
where $\theta_{1}$ and $\theta_{2}$ are the anisotropy and dipole terms, respectively, ${ }_{\mathrm{D}} P$ is the distortion polarisation, and ${ }_{\mathrm{E}} P$ is the electronic polarisation.

Price and Gillis ${ }^{15}$ give the molecular refraction of dimethyl sulphone as $R_{5876}=$ 20.08 c.c., from which, if we assume that ${ }_{\mathrm{E}} P=0.90, R_{5876}=18 \cdot 1$ c.c. (cf. $18 \cdot 26$ c.c. calculated by Coop and Sutton ${ }^{4}$ ), we obtain a second equation in $b_{1}, b_{2}$, and $b_{3}$ :

$$
\begin{equation*}
{ }_{\mathrm{E}} P=4 \pi \mathbf{N}\left(b_{1}+b_{2}+b_{3}\right) / 9 \tag{2}
\end{equation*}
$$

${ }^{4}$ Coop and Sutton, Trans. Faraday Soc., 1939, 35, 505.
${ }^{5}$ Lumbroso and Passerini, Bull. Soc. chim. Fvance, 1955, 1179.
${ }^{6}$ De Vries and Rodebush, J. Amer. Chem. Soc., 1931, 53, 2888.
7 Bergmann and Tschudnovsky, Ber., 1932, 65, 457.
${ }^{8}$ Gur'yanova, Zhur. fiz. Khim., 1950, 24, 479.
${ }^{9}$ Baliah and Shanmuganathan, Trans. Faraday Soc., 1959, 55, 232.
${ }^{10}$ Gomel, Lumbroso, Marziano, and Passerini, Bull. Soc. chim. France, 1959, 1908.
${ }^{11}$ Bergmann, Engel, and Sandor, Z. phys. Chem., 1930, B, 10, 397.
12 Hampson, Farmer, and Sutton, Proc. Roy. Soc., 1933, A, 143, 147.
${ }^{13}$ Longster and Walker, Tvans. Favaday Soc., 1953, 49, 228.
${ }^{14}$ Cumper and Vogel, J., 1959, 3521.
${ }^{15}$ Price and Gillis, J. Amer. Chem. Soc., 1953, 75, 4750.

As no light-scattering data exist from which $\sum\left(b_{\mathbf{i}}-b_{\mathbf{j}}\right)^{2}$, and thence the $\theta_{1}$ term, can be evaluated, an exact solution for the polarisability semi-axes is not possible. However, $\mu$ is very large, so that $\theta_{2}$ which is proportional to $\mu^{2}$ is great and, from the sign of the observed molar Kerr constant, is negative; $\left|\theta_{1}\right|$ must then be insignificantly small compared with $\left|\theta_{2}\right|$. From equation (l), $\theta_{1}+\theta_{2}=-51.6 \times 10^{-35}$ and if we neglect the $\theta_{1}$ term we are able to evaluate $\left(2 b_{1}-b_{2}-b_{3}\right)$ which in combination with equation (2) yields a solution for $b_{1}$ of $0 \cdot 64_{5}$ (Note: in the following text polarisabilities are expressed as $10^{-23}$ c.c. units). The estimate of $b_{1}$ is insensitive to changes in the value assumed for $\theta_{1}$, e.g., if $\left|\theta_{1}\right|=20 \%$ of $\left|\theta_{2}\right|$, then $b_{1}=0.63$.

Tetrahydrothiophen Dioxide.-For this molecule the $b_{1}$, which we locate along the bisector of the angle OSO (the assumed dipole moment direction), can be expressed in terms of the following components:

$$
b_{1}\left(\left[\mathrm{CH}_{2}\right]_{4} \mathrm{SO}_{2}\right)=b_{1}\left(\mathrm{Me}_{2} \mathrm{SO}_{2}\right)+2 b_{\mathrm{L}}^{\mathrm{O}-\mathrm{H}}+b_{\mathrm{T}}^{\mathrm{C}-\mathrm{O}}+2 b_{\mathrm{L}}^{\mathrm{O}-\mathrm{C}} \cos ^{2} \theta+2 b_{\mathrm{T}}^{\mathrm{O}-\mathrm{C}} \sin ^{2} \theta,
$$

where $\theta$ is the angle between each $\mathrm{C}-\mathrm{C}$ link ( $\alpha$ ), in Fig. 2, and the $b_{1}$ direction. The bond angles in the five-membered ring are uncertain: $\angle \mathrm{CSC}$ for dimethyl sulphone is quoted


Fig. 1.


Fig. 2.


Fig. 3.


Fig. 4.
as $115^{\circ} \pm 15^{\circ}$ (ref. 16, M139) and as $98^{\circ}$ for $\beta$-isoprene sulphone (ref. 16, M184). If we consider a structure in which the ring is assumed to be planar with each bond angle $108^{\circ}$, then $b_{1}$ (calc.) would be $0.99 \quad\left(b_{\mathrm{L}}^{\mathrm{O}}-\mathrm{O}=0.099, b_{\mathrm{T}}^{\mathrm{O}}-\mathrm{O}=b_{\mathrm{V}}^{\mathrm{O}}-\mathrm{C}=0.027 ; b_{\mathrm{L}}^{\mathrm{O}-\mathrm{H}}=b_{\mathrm{T}}^{\mathrm{O}}-\mathrm{H}=\right.$ $\left.b_{\mathrm{V}}^{\mathrm{C}-\mathrm{H}}=0.064\right)$. The observed $\infty\left({ }_{\mathrm{m}} K_{2}\right)$ is $+121 \times 10^{-12}$ from which $\theta_{1}+\theta_{2}$ equals $28.8 \times 10^{-35}$ and if $\theta_{2} \gg \theta_{1}$ then $\left(2 b_{1}-b_{2}-b_{3}\right)=c a .0 \cdot 10$. From ${ }_{\mathrm{E}} P\left(\left[\mathrm{CH}_{2}\right]_{4} \mathrm{SO}_{2}\right)=$ $25 \cdot 1_{5}$ c.c $\left\{={ }_{\mathrm{E}} P\left(\mathrm{Me}_{2} \mathrm{SO}_{2}\right)+2_{\mathrm{E}} P^{\mathrm{C}-\mathrm{H}}+3_{\mathrm{E}} P^{\mathrm{0}-\mathrm{C}}\right\},{ }^{17}$ we obtain $\left(b_{1}+b_{2}+b_{3}\right)$ as $2 \cdot 99 ; b_{1}$ thence becomes $1 \cdot 03$, in fair agreement with the estimate for a planar ring configuration.

Molecular Conformations of Diphenyl Sulphone.-Two structures have been examined: (I) in which the benzene ring planes are normal to the $\mathrm{C}-\mathrm{S}-\mathrm{C}$ plane (see Fig. 3), and (II) in which the benzene rings have been rotated $90^{\circ}$ from their positions in (I). Each structure has two planes of symmetry so that the principal axes directions are as shown in Fig. 3; $\mu_{1}$ in each case equals 4.97 D (the observed dipole moment from Table 2); $\mu_{2}=\mu_{3}=0$. The bond angle CSC is taken as $100^{\circ}$ (ref. 16, M230). Bond and group polarisability specifications are as follows: $b_{1}(\mathrm{Ph})=b_{2}(\mathrm{Ph})=1.056, b_{3}(\mathrm{Ph})=0.672 ; b_{1}\left(\mathrm{C}_{2} \mathrm{SO}_{2}\right)=0.26$, $b_{2}\left(\mathrm{C}_{2} \mathrm{SO}_{2}\right)=b_{3}\left(\mathrm{C}_{2} \mathrm{SO}_{2}\right)=0.37$ (the last three are the dimethyl sulphone semi-axes less six $\mathrm{C}-\mathrm{H}$ contributions, the assumption being made that $b_{2}=b_{3}$ for this group).

Baliah and Shanmuganathan ${ }^{9}$ give the molecular ( D line) refraction of diphenyl sulphone as 62.2 c.c. from which ${ }_{\mathrm{E}} P\left(\mathrm{Ph}_{2} \mathrm{SO}_{2}\right)$ follows as 56.0 c.c. (which is $0.90 R_{\mathrm{D}}$ ). The calculated electronic polarisation is 55.2 c.c. $\left[{ }_{E} P\left(\mathrm{Ph}_{2} \mathrm{SO}_{2}\right)\right.$ (calc.) $={ }_{\mathrm{E}} P\left(\mathrm{Me}_{2} \mathrm{SO}_{2}\right)-$ $6_{\mathrm{E}} P(\mathrm{C}-\mathrm{H})+2_{\mathrm{E}} P(\mathrm{Ph})$; the $\mathrm{C}-\mathrm{H}$ bond and Ph group values are from ref. 17]. The difference ${ }_{\mathrm{E}} P_{\text {exp }}-{ }_{\mathrm{E}} P_{\text {calc }}$ is equal to an exaltation of polarisability $\Delta b$ of 0.10 which in the subsequent calculations we treat as an increment of $\Delta b / 2$ on each of the polarisability

[^0]semi-axes $b_{1}(\mathrm{Ph})$. The calculated values for structures (I) and (II) for diphenyl sulphone are:

| Structure | $b_{1}$ (calc.) | $b_{2}$ (calc.) | $b_{3}$ (calc.) | $10^{12}{ }_{\mathrm{m}} K$ (calc.) |
| :---: | :---: | :---: | :---: | :---: |
| (I) | 1.96 | 2.23 | 2.48 | -1066 |
| (II) | 2.41 | 2.54 | 1.71 | +809 |

The observed $\infty\left({ }_{\mathrm{m}} K_{2}\right)$ is $-1115 \times 10^{-12}$ in reasonable agreement with that predicted for structure (I). Toussaint ${ }^{18}$ in 1945 had concluded from an $X$-ray crystal analysis of di- $p$-bromophenyl sulphone that the benzene ring planes are approximately perpendicular to the $\mathrm{Br}-\mathrm{S}-\mathrm{Br}$ plane.

Dimethyl Sulphoxide and Diphenyl Sulphoxide.-Specification of the molecular polarisability semi-axes for dimethyl sulphoxide is not possible from the data available. For this we require: a third equation in $b_{1}, b_{2}$, and $b_{3}$, the location of $b_{1}$ and $b_{3}$ in the plane of symmetry, and the direction of action of the permanent dipole moment with respect to the principal axes $b_{1}$ and $b_{3}$. Price and Gillis ${ }^{15}$ have shown that the molecular refractions (He line) of molecules $\mathrm{R}_{2} \mathrm{X}$ ( $\mathrm{X}=\mathrm{S}, \mathrm{SO}$, or $\mathrm{SO}_{2}$ ) are almost equal, from which we infer that $\sum b^{s-0}$ is approximately equal to $\sum b$ for a lone-pair of electrons; however, we are unable as yet to estimate the anisotropy of polarisability for electrons occupying non-bonding orbitals.

In the case of diphenyl sulphoxide the magnitude and the location of the polarisability semi-axes for any conformation will be governed in most part by the orientation of the phenyl groups within the molecule; so it is reasonable to assume that the polarisability specifications for any configuration of diphenyl sulphoxide will not differ significantly from those calculated for the analogous configuration of diphenyl sulphone.

Abrahams ${ }^{19}$ has shown that for diphenyl sulphoxide in the solid state the benzene ring planes are approximately perpendicular to the $\mathrm{C}-\mathrm{S}-\mathrm{C}$ plane. If we accept this, then $b_{1}, b_{2}$, and $b_{3}$ must be ca. $1 \cdot 96,2 \cdot 23$, and $2 \cdot 48$, respectively [the semi-axes for structure (I) of diphenyl sulphone]. The dependence of ${ }_{m} K$ (calc.) for diphenyl sulphoxide on $\alpha$, the angle between the direction of action of $\mu_{\text {res }}$ and the $b_{1}$ axis in Fig. 4, is shown below:

| $\alpha \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | $0^{\circ}$ | $10^{\circ}$ | $20^{\circ}$ | $30^{\circ}$ | $37^{\circ}$ | $38^{\circ}$ | $39^{\circ}$ | $40^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{12}{ }_{\mathrm{m}} K$ |  |  |  |  |  |  |  |  |
| (calc.) $\ldots \ldots \ldots \ldots \ldots$ | -715 | -673 | -546 | -357 | -196 | -172 | -147 | -123 |

Agreement between the observed and calculated values is obtained provided $\alpha=c a .38^{\circ}$. From ref. 16, M230, the angle OSO in di- $p$-bromophenyl sulphone is $131^{\circ}$, so that each S-O link is inclined $65.5^{\circ}$ to the $b_{1}$ direction. Ref. 19 lists results for diphenyl sulphoxide from which the corresponding angle is calculable as $65^{\circ}$. If we regard $\mu\left(\mathrm{Ph}_{2} \mathrm{SO}\right)$ (obs.) as the resultant of $\mu\left(\mathrm{Ph}_{2} \mathrm{~S}\right)(1.50 \mathrm{D}$ from ref. 20) and $\mu(\mathrm{SO})$, then the latter moment is 3.22 D and $\mu\left(\mathrm{Ph}_{2} \mathrm{SO}\right)$ (obs.) acts at $46^{\circ}$ to $b_{1}$, i.e., $\alpha=46^{\circ}$.

19 Abrahams, Acta Cryst., 1957, 10, 417.
20 Aroney, Le Fèvre, and Saxby, J., 1963, 1167.


[^0]:    ${ }^{16}$ Sutton et al., "Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem. Soc. Special Publ. No. 11, 1958.
    ${ }_{17}$ Le Fèvre and Steel, Chem. and Ind., 1961, 670.

